

Short-distance contribution to HLbL

Johan Bijnens

Introduction

General properties

Quarkloop

Shortdistance: naive

Shortdistance: correct

Numerica results

SHORT-DISTANCE CONTRIBUTION TO HLbL

Johan Bijnens

Lund University

Vetenskapsrådet

bijnens@thep.lu.se
http://thep.lu.se/~bijnens

INT Workshop on Hadronic contributions to $(g-2)_{\mu}$ Seattle, USA 9-13 September 2019

Why do we do this?

3 GeV proton beam

Resonant Laser Ionization of Muonium (~106 u+/s)

Surface muon beam (28 MeV/c, 4x108/s) Muonium Production

The muon $a_{\mu} = \frac{g_{\mu} - 2}{2}$ will be measured more precisely

Super Precision Magnetic Field (aT, -appm local precision)

contribution to HLbL

Johan Bijnens

Introduction

J-PARC

Silicon Tracker

Ultra Cold #+ Source Muon LINAC (300 MeV/o)

Fermilab

Why do we do this?

Experiment dominated by BNL, FNAL error down by four

• Theory taken from PDG2018

$$ullet a_{\mu}^{\mathsf{SM}} = a_{\mu}^{\mathsf{QED}} + a_{\mu}^{\mathsf{EW}} + a_{\mu}^{\mathsf{Had}}$$

$$ullet a_{\mu}^{\mathsf{Had}} = a_{\mu}^{\mathsf{LO-HVP}} + a_{\mu}^{\mathsf{HO-HVP}} + a_{\mu}^{\mathsf{HLbL}}$$

• Impressive agreement with g_{μ} to 2×10^{-9}

		$\delta \mu$	
Part	value	errors	units
a_{μ}^{EXP} :	116 592 091.x	(54)(33)	$\times 10^{-11}$
a_{μ}^{SM} :	116 591 823. <i>x</i>	(1)(34)(26)	$\times 10^{-11}$
Δa_{μ} :	268. <i>x</i>	(63)(43)	$\times 10^{-11}$
a_{μ}^{QED} :	116 584 719.0	(0.1)	×10 ⁻¹¹
a_{μ}^{EW} :	153.6	(1.0)	$\times 10^{-11}$
a_{μ}^{LO-HVP} :	6 931. <i>x</i>	(33)(7)	$\times 10^{-11}$
$a_{\mu}^{ ilde{HO} ext{-}HVP}$:	-86.3	(0.9)	$\times 10^{-11}$
$\stackrel{\mu}{a}_{\mu}^{HLbL}$:	105. <i>x</i>	(26)	$\times 10^{-11}$

Short-distance contribution to HLbL

Johan Bijnens

Introduction

General properties

Quarkloop

Short-

Shortlistance: correct

Hadronic contributions

Short-distance contribution to HLbL

Johan Bijnens

Introduction

- The blobs are hadronic contributions.
- I will present some results for HLbL short-distance JB, N. Hermansson-Truedsson, A. Rodriguez-Sanchez, arxiv:1908.03331

HLbL: the main object to calculate

Muon line and photons: well known

The blob: fill in with hadrons/QCD

Trouble: low and high energy very mixed

Double counting needs to be avoided: hadron exchanges versus quarks

Short-distance contribution to HLbL

Johan Bijnens

Introduction

General properties

Quarkloop

Shortdistance:

Shortdistance: correct

General properties

Short-distance contribution to HLbL

Johan Bijnens

Introduction

General properties

Quarkloop

Shortdistance:

Shortdistance: correct

Numerical

Actually we really need

$$\left. rac{\delta \Pi^{\mu
u\lambda\sigma}(q_1,q_2,q_3)}{\delta q_{4
ho}}
ight|_{q_4=0}$$

General properties

$\Pi^{\mu\nu\lambda\sigma}(q_1,q_2,q_3)$:

- In general 138 Lorentz structures (136 in 4 dimensions)
- Using $q_{1\mu}\Pi^{\mu\nu\lambda\sigma}=q_{2\nu}\Pi^{\mu\nu\lambda\sigma}=q_{3\lambda}\Pi^{\mu\nu\lambda\sigma}=q_{4\sigma}\Pi^{\mu\nu\lambda\sigma}=0$ 43 (41) gauge invariant structures
- 41 helicity amplitudes
- Bose symmetry relates some of them
- Compare HVP: one function, one variable
- General calculation from experiment via dispersion relations: recent progress
 Colangelo, Hoferichter, Kubis, Procura, Stoffer....
- Well defined separation between different contributions
- Theory initiative: paper under preparation
- One remaining problem: intermediate- and short-distances

Short-distance contribution to HLbL

Johan Bijnens

Introduction

General properties

Quarkloop

Shortdistance:

Shortdistance: correct

General

• Formalism of Colangelo et al., JHEP 1704 (2017) 161 [1702.07347]

$$\bullet \ \ \Pi^{\mu\nu\lambda\sigma}(q_1,q_2,q_3) = \sum_{i=1,54} \hat{T}^{\mu\nu\lambda\sigma} \hat{\Pi}_i$$

•
$$Q_i^2 = -q_i^2$$

$$Q_3^2 = Q_1^2 + Q_2^2 + 2\tau Q_1 Q_3$$

•
$$a_{\mu} = \frac{2\alpha^3}{3\pi^2} \int_0^{\infty} dQ_1 dQ_2 Q_1^3 Q_2^3 \int_{-1}^1 d\tau \sqrt{1-\tau^2} \sum_{i=1,12} \hat{T}_i \overline{\Pi}_i$$

• The 12 $\overline{\Pi}_i$ are related to 6 $\hat{\Pi}_i$ with $q_4 \to 0$.

$$\begin{split} &\overline{\Pi}_{1} = \hat{\Pi}_{1} \,, \, \overline{\Pi}_{2} = C_{23} \left[\hat{\Pi}_{1} \right] \,, \, \overline{\Pi}_{3} = \hat{\Pi}_{4} \,, \, \overline{\Pi}_{4} = C_{23} \left[\hat{\Pi}_{4} \right] \,, \\ &\overline{\Pi}_{5} = \hat{\Pi}_{7} \,, \, \overline{\Pi}_{6} = C_{12} \left[C_{13} \left[\hat{\Pi}_{7} \right] \right] \,, \, \overline{\Pi}_{7} = C_{23} \left[\hat{\Pi}_{7} \right] \,, \\ &\overline{\Pi}_{8} = C_{13} \left[\hat{\Pi}_{17} \right] \,, \, \overline{\Pi}_{9} = \hat{\Pi}_{17} \,, \, \overline{\Pi}_{10} = \hat{\Pi}_{39} \,, \\ &\overline{\Pi}_{11} = -C_{23} \left[\hat{\Pi}_{54} \right] \,, \, \overline{\Pi}_{12} = \hat{\Pi}_{54} \,, \end{split}$$

Short-distance contribution to HLbL

Johan Bijnens

Introduction

General properties

Quarkloop

Shortdistance: naive

Shortdistance: correct

Quarkloop

Short-distance contribution to HLbL

Johan Bijnens

introductio

properties

Quarkloop

Charm loo Quarkloop constituent

Shortdistance

Shortdistance:

Numerical

- Use (constituent) quark loop
- Used for full estimates since the beginning (1970s)
- Used for short-distance estimates with mass as a cut-off JB, Pallante, Prades, 1996

• We recalculated:

- In agreement with quarkloop formulae from Hoferichter, Stoffer, private communication
- In agreement with known numerics

Charm loop

Short-distance contribution to HLbL

Johan Bijnens

Introducti

General properties

Quarkloop

Charm loop Quarkloop constituent

Shortdistance:

Shortdistance: correct

- Kühn et al., hep-ph/0301151, Phys.Rev. D68 (2003) 033018
- $a_{\mu} = \left(\frac{\alpha}{\pi}\right)^3 N_c e_q^4 \left[\frac{m_{\mu}^2}{M^2} \left(\frac{3}{3}\zeta_3 \frac{19}{16}\right) + \cdots\right]$
- Up to m_{μ}^{10}/M^{10} in paper
- $m_c = 1.27 \text{ GeV}$
- $a_{\mu}^{\mathrm{HLbLc}} = (3.165 0.0786 0.00033 + \cdots) \times 10^{-11}$ = $3.1(1) \times 10^{-11}$
- $m_b = 4.18 \text{ GeV}$
- $a_{\mu}^{\mathrm{HLbLb}} = 1.8 \times 10^{-13}$

Quarkloop: u, d, s

Short-distance contribution to HLbL

Johan Bijnens

itroductio

General properties

Quarkloop
Charm loop
Quarkloop
constituent

Shortdistance: naive

hortlistance: orrect

- ullet M_Q provides an infrared cut-off, $M_Q o 0$ divergent
- About 12×10^{-11} from above 1 GeV for $M_Q = 0.3$ GeV
- About 17×10^{-11} from above 1 GeV for $M_Q = 0$

Quarkloop

Short-distance contribution to HLbL

Johan Bijnens

introduction

General properties

Charm loop Quarkloop constituent

Shortdistance:

Shortdistance:

Numerical

- Is it a first term in a systematic OPE?
- OPE has been used as constraints on specific contributions
 - $\pi^0 \gamma^* \gamma^*$ asymptotic behaviour
 - Constraints on many other hadronic formfactors
 - $q_1^2 \approx q_2^2 \gg q_3^2$ Melnikhov, Vainshtein 2003
 - These are discussed in the next two talks

Short-distance: first attempt

$$\Pi^{\mu\nu\lambda\sigma} = -i \int d^4x d^4y d^4z e^{-i(q_1\cdot x + q_2\cdot y + q_3\cdot z)} \left\langle T\left(j^{\mu}(x)j^{\nu}(y)j^{\lambda}(z)j^{\sigma}(0)\right)\right\rangle$$

Short-distance contribution to HLbL

Johan Bijnens

ntroductio

General

Quarkloop

Shortdistance: naive

Shortdistance: correct

Numerical results

• Usual OPE: x, y, z all small

• Next term problems: no loop momentum;

 $q_4 o 0$ propagator diverges: q_1

Short-distance: correctly

- Similar problem in QCD sum rules for electromagnetic radii and magnetic moments
- Ioffe, Smilga, 1984
- For the q₄-leg use a constant background field and do the OPE in the presence of that constant background field
- Use radial gauge: $A_4^{\lambda}(w) = \frac{1}{2}w_{\mu}F^{\mu\lambda}$ whole calculation is immediately with $q_4 = 0$.
- First term is exactly the usual quark loop (even including quark masses)

Short-distance contribution to HLbL

Johan Bijnens

itioduction

properties

Quarkloop

Shortdistance:

Shortdistance:

Quarkloop results: massless case

 $\hat{\Pi}_{i}^{\text{ql}} = \sum \frac{N_{c} e_{q}^{4}}{16\pi^{2}} \int_{0}^{1} dx \int_{0}^{1-x} dy \ I_{i}(x,y)$

Short-distance contribution to HLbL

distance: correct

Johan Biinens

Short-

 $I_{54} = \frac{16}{D^2} \left(\frac{1}{Q^2} y^2 (1-y)(1-2y) - \frac{1}{Q^2} x^2 (1-x)(1-2x) \right)$

 I_4 and I_{17} similar but slightly longer expressions

 $I_7 = \frac{64}{12}xy(-1+2x)(x+y)(1-x-y)^2$

 $D = x(1-x-y)Q_1^2 + y(1-x-y)Q_2^2 + xyQ_3^2$

 $I_1 = \frac{16}{D^2} \left(y^2 - 3y^3 + 2y^4 - 4xy^2 + 4xy^3 - x^2y + 2x^2y^2 \right)$

 $-\frac{Q_1^2}{Q_2^2}(y+x)(1-x-y)^2(-1+2x+2y)$

 $I_{39} = \frac{64}{123}xy(1-x-y)(y-y^2+x-3xy+2xy^2-x^2+2x^2y)$

Short-distance: next term(s)

- Do the usual QCD sum rule expansion in terms of vacuum condensates
- There are new condensates, induced by the constant magnetic field: $\langle \bar{q}\sigma_{\alpha\beta}q\rangle \equiv e_aF_{\alpha\beta}X_a$
- Lattice QCD Bali et al., arXiv:1206.4205 $X_u=40.7\pm1.3$ MeV, $X_d=39.4\pm1.4$ MeV, $X_s=53.0\pm7.2$ MeV
- Could have started at order 1/Q, only starts at $1/Q^2$ via $m_q X_q$ corrections to the leading quark-loop result
- \bullet X_q and m_q are very small, only a very small correction
- Next order: very many condensates contribute, work in progress

Short-distance contribution to HLbL

Johan Bijnens

ntroduction

General properties

Quarkloop

Shortdistance:

Shortdistance: correct

Short-distance

contribution to HLbL

Johan Bijnens

Shortdistance: correct

Short-distance

• $N_c = 3$ and one quark

$$\hat{\Pi}_{1} = m_{q} X_{q} e_{q}^{4} \frac{-4(Q_{1}^{2} + Q_{2}^{2} - Q_{3}^{2})}{Q_{1}^{2} Q_{2}^{2} Q_{3}^{4}} \qquad \hat{\Pi}_{7} = 0$$

$$\hat{\Pi}_{4} = m_{q} X_{q} e_{q}^{4} \frac{8}{Q_{1}^{2} Q_{2}^{2} Q_{3}^{2}} \qquad \hat{\Pi}_{17} = m_{q} X_{q} e_{q}^{4} \frac{Q_{1}^{2} Q_{2}^{2} Q_{3}^{2}}{Q_{1}^{4} Q_{2}^{4} Q_{3}^{2}} \qquad \hat{\Pi}_{39} = 0$$

Short-distance: numerical results

Short-distance contribution to HLbL

Johan Bijnens

ntroduction

properties

Quarkloop

distance: naive

Shortdistance: correct

Numerical

- preliminary
- $Q_1, Q_2, Q_3 \ge Q_{\min}$
- $m_u = m_d = m_s = 0$ for quark-loop
- ullet $m_u=m_d=5$ MeV and $m_s=100$ MeV for $m_q X_q$

Q_{min}	quarkloop	$m_u X_u + m_d X_d$	$m_s X_s$
1 GeV	17.3×10^{-11}	5.40×10^{-13}	8.29×10^{-13}
2 GeV	4.35×10^{-11}	3.40×10^{-14}	5.22×10^{-14}

- Above 1 GeV still 15% of total value of HLbL
- ullet Quarkloop goes roughly as $1/Q_{
 m min}^2$
- $m_q X_q$ goes roughly as $1/Q_{\min}^4$
- Naive suppression is $m_q X_q/Q_{\rm min}^2 \sim 2 \times 10^{-3}$
- Observed is roughly that

Numerical results

1.5

2

2.5

3

3.5

Short-distance contribution to HLbL Johan Bijnens

Introduction

General properties

Quarkloop

Shortlistance: naive

Shortdistance: correct

Short-distance: $1/Q_{\min}^2$

• Can we understand scaling with Q_{\min} ?

•
$$a_{\mu} = \frac{2\alpha^3}{3\pi^2} \int_0^{\infty} dQ_1 dQ_2 Q_1^3 Q_2^3 \int_{-1}^1 d\tau \sqrt{1-\tau^2} \sum_{i=1,1,2} \hat{T}_i \overline{\Pi}_i$$

- Do $Q_i \rightarrow \lambda Q_i$
- overall factor goes as λ^8
- Quark loop has no scale thus $\hat{\Pi}_i$ scale with their dimension $\hat{\Pi}_1, \hat{\Pi}_4 \sim \lambda^{-4}, \qquad \hat{\Pi}_7, \hat{\Pi}_{17}, \hat{\Pi}_{39}, \hat{\Pi}_{54} \sim \lambda^{-6}$
- $\Longrightarrow \overline{\Pi}_{1,\dots,4} \sim \lambda^{-4}$ $\overline{\Pi}_{5,\dots,12} \sim \lambda^{-6}$
- Expand the T_i for $Q_i \gg m_{\mu}$: $T_1 \sim m_{\mu}^4$, $T_{i \neq 1} \sim m_{\mu}^2$ $T_1 \sim \lambda^{-8}$, $T_{2,3,4} \sim \lambda^{-6}$, $T_{5,...,12} \sim \lambda^{-4}$
- Put all together: quark-loop scales as $a_{\mu}^{\mathrm{SD}\ \mathrm{ql}} \sim \lambda^{-2}$
- $m_q X_q$ adds an overall factor $\Longrightarrow {a_\mu^{{
 m SD} X_q} \over a_\mu} \sim \lambda^{-4}$

Short-distance contribution to HLbL

Johan Bijnens

itroduction

General properties

Quarkloop

Shortdistance: naive

Shortdistance: correct

Short-distance: Conclusions

Short-distance contribution to HLbL

Johan Bijnens

- We have shown that the quarkloop really is the first term of a proper OPE expansion for the HLbL
- We have calculated the next term which is suppressed by quark masses and a small X_a : negligible
- The next term contains both the usual vacuum and a large number of induced condensates but will not be suppressed by small quark masses
- Why do this: matching of the sum over hadronic contributions to the expected short distance domain
- Finding the onset of the asymptotic domain